ECON6037 Experimental Economics

Causal inference

Gerhard Riener

February 19, 2024

Why should social scientists and policymakers care about causality?

Counterfactual Approach to Causal Inference

Recent changes in social science research

  • Historically, reverse causality and omitted variable bias have been problematic for a lot of social science research aimed at making causal claims.

  • Recently, the counterfactual approach has been embraced in the social sciences as a framework for causal inference.

  • This represents a big shift in research:

    • Being more precise about what we mean by causal effects.

    • Using randomization or designs with as-if randomization.

    • More partnerships between researchers and practitioners.

“X causes Y” is a claim about what didn’t happen

  • In the counterfactual approach: “If X had not occurred, then Y would not have occurred.”

  • Experiments help us learn about counterfactual and manipulation-based claims about causation.

  • It’s not wrong to conceptualize “cause” in another way. But it has been productive to work in this counterfactual framework (Brady 2008).

How to interpret “X causes Y” in this approach

  1. “X causes Y” need not imply that W and V do not cause Y: X is a part of the story, not the whole story. (The whole story is not necessary in order to learn about whether X causes Y).

  2. “X causes Y” requires a context: matches cause flame but require oxygen; small classrooms improve test scores but require experienced teachers and funding (Cartwright and Hardie 2012).

  3. “X causes Y” can mean “With X, the probability of Y is higher than would be without X.” or “Without X there is no Y.” Either is compatible with the counterfactual idea.

How to interpret “X causes Y” in this approach

  1. It is not necessary to know the mechanism to establish that X causes Y. The mechanism can be complex, and it can involve probability: X causes Y sometimes because of A and sometimes because of B.

  2. Counterfactual causation does not require “a spatiotemporally continuous sequence of causal intermediates”

    • Ex: Person A plans event Y. Person B’s action would stop Y (say, a random bump from a stranger). Person C doesn’t know about Person A or action Y but stops B (maybe thinks B is going to trip). So, Person A does action Y. And Person C causes action Y (without Person C’s action, Y would not have occurred) (Holland 1986).
  3. Correlation is not causation.

Exercise: Echinacea

  • Your friend says taking echinacea (a traditional remedy) reduces the duration of colds.

  • If we take a counterfactual approach, what does this statement implicitly claim about the counterfactual? What other counterfactuals might be possible and why?

Potential Outcomes

Potential outcomes

  • For each unit we assume that there are two post-treatment outcomes: \(Y_i(1)\) and \(Y_i(0)\).

  • \(Y_i(1)\) is the outcome that would obtain if the unit received the treatment (\(T_i=1\)).

  • \(Y_i(0)\) is the outcome that would obtain if the unit received the control (\(T_i=0\)).

Definition of causal effect

  • The causal effect of treatment (relative to control) is: \(\tau_i = Y_i(1) - Y_i(0)\)

  • Note that we’ve moved to using \(T\) to indicate our treatment (what we want to learn the effect of). \(X\) will be used for background variables.

Key features of this definition of causal effect

  1. You have to define the control condition to define a causal effect.

    • Say \(T=1\) means a community meeting to discuss public health. Is \(T=0\) no meeting at all? Is \(T=0\) a community meeting on a different subject? Is \(T=0\) a flyer on public health?
    • The phrase ``causal effect of \(T\) on \(Y\)’’ doesn’t make sense without knowing what is means to not have \(T\).
  2. Each individual unit \(i\) has its own causal effect \(\tau_i\).

  3. But we can’t measure the individual-level causal effect, because we can’t observe both \(Y_i(1)\) and \(Y_i(0)\) at the same time. This is known as the fundamental problem of causal inference. What we observe is \(Y_i\):

\(Y_i = T_iY_i(1) + (1-T_i)Y_i(0)\)

Imagine we know both \(Y_i(1)\) and \(Y_i(0)\) (this is never true!)

\(i\) \(Y_i(1)\) \(Y_i(0)\) \(\tau_i\)
Andrei 1 1 0
Bamidele 1 0 1
Claire 0 0 0
Deepal 0 1 -1
  • We have the treatment effect for each individual.

  • Note the heterogeneity in the individual-level treatment effects.

  • But we only have at most one potential outcome for each individual, which means we don’t know these treatment effects.

Average causal effect

  • While we can’t measure the individual causal effect, \(\tau_i = Y_i(1)-Y_i(0)\), we can randomly assign subjects to treatment and control conditions to estimate the average causal effect, \(\bar{\tau}_i\):

\(\overline{\tau_i} = \frac{1}{N} \sum_{i=1}^N ( Y_i(1)-Y_i(0) ) = \overline{Y_i(1)-Y_i(0)}\)

  • The average causal effect is also known as the average treatment effect (ATE).

  • Further explanation on how after we discuss randomization of treatment assignment in the next section.

Estimands and causal questions

  • Before we discuss randomization and how that allows us to estimate the ATE, note that the ATE is a type of estimand.

  • An estimand is a quantity you want to learn about (from your data). It’s the target of your research that you set.

  • Being precise about your research question means being precise about your estimand. For causal questions, this means specifying:

    • The outcome
    • The treatment and control conditions
    • The study population

Other types of estimands you may be interested in

  • The ATE for a particular subgroup, aka conditional average treatment effect (CATE)
  • Differences in CATEs: differences in the average treatment effect for one group as compared with another group.
  • The ATE for just the treated units, aka ATT (average treatment effect on the treated)
  • The local ATE (LATE). “Local” = those whose treatment status would be changed by an encouragement (aka CACE, complier average causal effect) or those in the neighborhood of a discontinuity for a regression discontinuity design.
  • Estimands are discussed in detail in Estimands and Estimators Module.

Causal Claims

Causal claims: Contribution or attribution?

  • Counterfactual model is all about contribution, not attribution, except in a very conditional sense.

  • Focus is on non-rival contributions

    • Not: what caused Y but what is the effect of \(X\) ?
    • At most it provides a conditional account
    • Consider at outcome Y that might depend on two causes \(X_1\) and \(X_2\): \(Y(0, 0) = 0\), \(Y(1, 0) = 0\), \(Y(0, 1) = 0\), \(Y(1, 1) = 1\)
  • The case of perfect complements…

  • What caused \(Y\)? Which cause was most important?

Causal claims: Contribution or attribution?

  • Counterfactual model is all about contribution, not attribution

  • Focus is on non-rival contributions

  • Question is not: what caused \(Y\) but

  • what is the effect of \(X\)?

Causal claims: Conditional attribution

  • At most it provides a conditional account

  • This is problem for research programs that define “explanation” in terms of figuring out the things that cause Y (e.g. mediation analysis Heckman and Pinto, 2015)

  • Difficult to conceptualize what it means to say one cause is more important than another cause.

A causal statement

Erdogan’s increasing authoritarianism was the most important reason for the attempted coup

Questions raised

Is this more important than Turkey’s history of coups? What does that mean?

Causal claims: No causation without manipulation

  • Some seemingly causal claims not admissible.
  • Manipulation must be imaginable (whether practical or not)
  • This renders thinking about effects of race and gender difficult

What does it mean to say that Aunt Pat voted for Brexit because she is old?

Compare:

What does it mean to say that Southern counties voted for Brexit because they have many old people?

Causal claims: Causal claims are everywhere

  • Jack exploited Jill

  • It’s Jill’s fault that bucket fell

  • Jack is the most obstructionist member of Congress

  • Melania Trump stole from Michelle Obama’s speech

Note

Activists need causal claims

References

Brady, Henry E. 2008. “Causation and Explanation in Social Science.” In The Oxford Handbook of Political Science. https://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780199286546.001.0001/oxfordhb-9780199286546-e-10.
Cartwright, Nancy, and Jeremy Hardie. 2012. Evidence-based policy: a practical guide to doing it better. Oxford University Press.
Holland, Paul W. 1986. “Statistics and Causal Inference.” Journal of the American Statistical Association 81: 945–60.